NUMBER THEORY SEMINAR ASSIGNMENT 6 DUE DATE: DECEMBER 19, 2018

Exercise 1. Let p be a prime, and $q = p^m$ a prime power. Show that the binomial coefficients $\binom{q}{j}$ are divisible by p for $1 \le j \le q-1$.

Let \mathbb{F}_q be a finite field with q elements, with q odd. Let $Q(T) \in \mathbb{F}_q[T]$ be a polynomial of positive degree. For any extension field E of \mathbb{F}_q , let

$$C(E) = \{(x, y) \in E \times E : y^2 = Q(x)\}$$

(C is called a "hyper-elliptic curve over \mathbb{F}_q " when deg Q > 2).

Exercise 2. a) For a quadratic polynomial $Q(T) = T^2 + a \in \mathbb{F}_q[T]$, show that if $a \neq 0$ then

$$#C(\mathbb{F}_q) = q - 1.$$

b) What happens when a = 0?

Exercise 3. Show that

$$#C(\mathbb{F}_q) = q + \sum_{\alpha \in \mathbb{F}_q} Q(\alpha)^{(q-1)/2}$$

Exercise 4. Assume now that $Q \in \mathbb{F}_q[T]$ is monic irreducible. Show that

$$#C(\mathbb{F}_q) = q + (-1)^{\frac{q-1}{2} \deg Q} \sum_{\alpha \in \mathbb{F}_q} \left(\frac{x-\alpha}{Q}\right)_2$$